

Role of CTF in low input ecological systems

Tim Chamen CTF Europe

Most of what we recognise as poor soil structure is caused by field traffic

What is a "good" soil structure?

 A diverse mix of solids, air and water with a continuous network of pores that allow free movement of air, water, roots & soil fauna

Example of good soil structure & poor soil structure caused by field traffic

Poor

Evidence of damage in arable crops

Creation of damage in grassland

Same field, one week later!

Presentation sponsored by:

AS Communications Bringing Technology to Agriculture

Compaction makes soil management more difficult and costly

Energy to loosen. Energy to re-compact
Loss of moisture
Accelerated loss of organic matter
Uneven germination and growth

weeds and crops

Controlled Traffic Farming

any system that confines all tracks to least possible area of permanent traffic lanes

CTF is NOT prescriptive about tillage
 CTF is NOT just about keeping tramlines in the same place

 CTF is a commitment to continual improvement

CTF – how?

• Match as many track gauges as possible

Introduce a Global Navigation
 Satellite System (GNSS) with RTK correction

Base station

Rover

Matching widths

TwinTrac – tractors straddle harvester passes

Matching track and implement gauges "OutTrac" CTF system

BENEFITS OF CTF

Yield improvements with CTF

% increase in yield by crop type under controlled compared with random traffic

Benefits of CTF

Some of the advantages

Soils stay drier at the surface
Spring sowing a lot easier (traffic lanes)
Soil more amenable to inter-row tillage
Stale seedbeds easier to create
Later drilling less risky because of permanent traffic lanes

On-farm costs East Hendred

Old System

CTF System

1.21 Hrs/Ha 38.12 L/Ha		0.86	5 Hrs/Ha	23.28 L/Ha	>	
Cambroll	0.17	2	Cambroll	0.17	2	
6M Drill	0.26	9.74	10M Drill	0.17	7.48	
Camb Roll	0.17	2	Camb Roll	0.17	2	
TriplePress	0.25	9.38	10m Cult	0.15	6.8	
V-Form	0.36	15	Subsoil CTF Lanes	0.22	5	
	Hrs/Ha	L/Ha		Hrs/Ha	L/Ha	

Effects of tracking on infiltration CTF > by average factor of 4

No obvious wheel track in stubble 375 mm/h infiltration

Wheel track evident in stubble No measurable infiltration

Poor infiltration leads to water, nutrient and soil loss

CTF in potatoes and onions

The ultimate goal! Planting all crops with surface or no tillage, as here, straight from onions into potatoes

Next generation CTF?

